Tisk…

Hledali jste: aster


18  výsledků nalezeno

SearchResultCount:"18"

Sort Results

Zobrazit seznam Rychlý náhled (novinka)

Ohodnoťte výsledky hledání

Katalogové číslo: (BOSSBS-3406R-HRP)
Dodavatel: Bioss
Popis: Structural Maintenance of Chromosomes (SMC) family proteins play critical roles in various nuclear events that require structural changes of chromosomes, including mitotic chromosome organization, DNA recombination and repair and global transcriptional repression. The chromosome proteins are conserved in eukaryotes and can lead to mitotic chromosome segregation defects, suggesting a critical function of SMC family proteins in mitotic chromosome dynamics. SMC1 and SMC3 form a heterodimeric complex required for metaphase progression in mitotic cells. Specifically this SMC1/SMC3 complex is responsible for sister chromatid cohesion during metaphase. A number of cellular factors interact with hSMC1/hSMC3 during cell cycle. The major population of hSMC1/hSMC3 is in a compex with hRAD21 forming the human cohesion complex. Human cohesion complex associates with chromosomes which peaks at S phase and dissociates from chromosomes during G2/M transition. In addition, a subpopulation of hSMC1/hSMC3 associates tightly with nuclear matrix and centrosomes during interphase. A subset of hSMC1/hSMC3 is localized to spindle poles, spindles and kinetochores during mitosis when cohesin is in the cytoplasm. hSMC1/hSMC3 is required for spindle aster formation in vitro and reacts with nuclear mitotic apparatus protein in vivo.
Měrná jednotka: 1 * 100 µl


Katalogové číslo: (BOSSBS-3406R-CY5.5)
Dodavatel: Bioss
Popis: Structural Maintenance of Chromosomes (SMC) family proteins play critical roles in various nuclear events that require structural changes of chromosomes, including mitotic chromosome organization, DNA recombination and repair and global transcriptional repression. The chromosome proteins are conserved in eukaryotes and can lead to mitotic chromosome segregation defects, suggesting a critical function of SMC family proteins in mitotic chromosome dynamics. SMC1 and SMC3 form a heterodimeric complex required for metaphase progression in mitotic cells. Specifically this SMC1/SMC3 complex is responsible for sister chromatid cohesion during metaphase. A number of cellular factors interact with hSMC1/hSMC3 during cell cycle. The major population of hSMC1/hSMC3 is in a compex with hRAD21 forming the human cohesion complex. Human cohesion complex associates with chromosomes which peaks at S phase and dissociates from chromosomes during G2/M transition. In addition, a subpopulation of hSMC1/hSMC3 associates tightly with nuclear matrix and centrosomes during interphase. A subset of hSMC1/hSMC3 is localized to spindle poles, spindles and kinetochores during mitosis when cohesin is in the cytoplasm. hSMC1/hSMC3 is required for spindle aster formation in vitro and reacts with nuclear mitotic apparatus protein in vivo.
Měrná jednotka: 1 * 100 µl


Nové řešení transparentnosti pro evropské zákazníky

Všimli jste si naší nově zlepšené viditelnosti rozmístění zásob u pokladny?

Zjistěte více

Zlepšení rozmístění zásob

Katalogové číslo: (BOSSBS-3406R-CY5)
Dodavatel: Bioss
Popis: Structural Maintenance of Chromosomes (SMC) family proteins play critical roles in various nuclear events that require structural changes of chromosomes, including mitotic chromosome organization, DNA recombination and repair and global transcriptional repression. The chromosome proteins are conserved in eukaryotes and can lead to mitotic chromosome segregation defects, suggesting a critical function of SMC family proteins in mitotic chromosome dynamics. SMC1 and SMC3 form a heterodimeric complex required for metaphase progression in mitotic cells. Specifically this SMC1/SMC3 complex is responsible for sister chromatid cohesion during metaphase. A number of cellular factors interact with hSMC1/hSMC3 during cell cycle. The major population of hSMC1/hSMC3 is in a compex with hRAD21 forming the human cohesion complex. Human cohesion complex associates with chromosomes which peaks at S phase and dissociates from chromosomes during G2/M transition. In addition, a subpopulation of hSMC1/hSMC3 associates tightly with nuclear matrix and centrosomes during interphase. A subset of hSMC1/hSMC3 is localized to spindle poles, spindles and kinetochores during mitosis when cohesin is in the cytoplasm. hSMC1/hSMC3 is required for spindle aster formation in vitro and reacts with nuclear mitotic apparatus protein in vivo.
Měrná jednotka: 1 * 100 µl


Katalogové číslo: (BOSSBS-3406R-A680)
Dodavatel: Bioss
Popis: Structural Maintenance of Chromosomes (SMC) family proteins play critical roles in various nuclear events that require structural changes of chromosomes, including mitotic chromosome organisation, DNA recombination and repair and global transcriptional repression. The chromosome proteins are conserved in eukaryotes and can lead to mitotic chromosome segregation defects, suggesting a critical function of SMC family proteins in mitotic chromosome dynamics. SMC1 and SMC3 form a heterodimeric complex required for metaphase progression in mitotic cells. Specifically this SMC1/SMC3 complex is responsible for sister chromatid cohesion during metaphase. A number of cellular factors interact with hSMC1/hSMC3 during cell cycle. The major population of hSMC1/hSMC3 is in a compex with hRAD21 forming the human cohesion complex. Human cohesion complex associates with chromosomes which peaks at S phase and dissociates from chromosomes during G2/M transition. In addition, a subpopulation of hSMC1/hSMC3 associates tightly with nuclear matrix and centrosomes during interphase. A subset of hSMC1/hSMC3 is localised to spindle poles, spindles and kinetochores during mitosis when cohesin is in the cytoplasm. hSMC1/hSMC3 is required for spindle aster formation in vitro and reacts with nuclear mitotic apparatus protein in vivo.
Měrná jednotka: 1 * 100 µl


Katalogové číslo: (BOSSBS-3406R-CY7)
Dodavatel: Bioss
Popis: Structural Maintenance of Chromosomes (SMC) family proteins play critical roles in various nuclear events that require structural changes of chromosomes, including mitotic chromosome organization, DNA recombination and repair and global transcriptional repression. The chromosome proteins are conserved in eukaryotes and can lead to mitotic chromosome segregation defects, suggesting a critical function of SMC family proteins in mitotic chromosome dynamics. SMC1 and SMC3 form a heterodimeric complex required for metaphase progression in mitotic cells. Specifically this SMC1/SMC3 complex is responsible for sister chromatid cohesion during metaphase. A number of cellular factors interact with hSMC1/hSMC3 during cell cycle. The major population of hSMC1/hSMC3 is in a compex with hRAD21 forming the human cohesion complex. Human cohesion complex associates with chromosomes which peaks at S phase and dissociates from chromosomes during G2/M transition. In addition, a subpopulation of hSMC1/hSMC3 associates tightly with nuclear matrix and centrosomes during interphase. A subset of hSMC1/hSMC3 is localized to spindle poles, spindles and kinetochores during mitosis when cohesin is in the cytoplasm. hSMC1/hSMC3 is required for spindle aster formation in vitro and reacts with nuclear mitotic apparatus protein in vivo.
Měrná jednotka: 1 * 100 µl


Katalogové číslo: (BOSSBS-3406R-A647)
Dodavatel: Bioss
Popis: Structural Maintenance of Chromosomes (SMC) family proteins play critical roles in various nuclear events that require structural changes of chromosomes, including mitotic chromosome organization, DNA recombination and repair and global transcriptional repression. The chromosome proteins are conserved in eukaryotes and can lead to mitotic chromosome segregation defects, suggesting a critical function of SMC family proteins in mitotic chromosome dynamics. SMC1 and SMC3 form a heterodimeric complex required for metaphase progression in mitotic cells. Specifically this SMC1/SMC3 complex is responsible for sister chromatid cohesion during metaphase. A number of cellular factors interact with hSMC1/hSMC3 during cell cycle. The major population of hSMC1/hSMC3 is in a compex with hRAD21 forming the human cohesion complex. Human cohesion complex associates with chromosomes which peaks at S phase and dissociates from chromosomes during G2/M transition. In addition, a subpopulation of hSMC1/hSMC3 associates tightly with nuclear matrix and centrosomes during interphase. A subset of hSMC1/hSMC3 is localized to spindle poles, spindles and kinetochores during mitosis when cohesin is in the cytoplasm. hSMC1/hSMC3 is required for spindle aster formation in vitro and reacts with nuclear mitotic apparatus protein in vivo.
Měrná jednotka: 1 * 100 µl


Katalogové číslo: (BOSSBS-3406R-A555)
Dodavatel: Bioss
Popis: Structural Maintenance of Chromosomes (SMC) family proteins play critical roles in various nuclear events that require structural changes of chromosomes, including mitotic chromosome organization, DNA recombination and repair and global transcriptional repression. The chromosome proteins are conserved in eukaryotes and can lead to mitotic chromosome segregation defects, suggesting a critical function of SMC family proteins in mitotic chromosome dynamics. SMC1 and SMC3 form a heterodimeric complex required for metaphase progression in mitotic cells. Specifically this SMC1/SMC3 complex is responsible for sister chromatid cohesion during metaphase. A number of cellular factors interact with hSMC1/hSMC3 during cell cycle. The major population of hSMC1/hSMC3 is in a compex with hRAD21 forming the human cohesion complex. Human cohesion complex associates with chromosomes which peaks at S phase and dissociates from chromosomes during G2/M transition. In addition, a subpopulation of hSMC1/hSMC3 associates tightly with nuclear matrix and centrosomes during interphase. A subset of hSMC1/hSMC3 is localized to spindle poles, spindles and kinetochores during mitosis when cohesin is in the cytoplasm. hSMC1/hSMC3 is required for spindle aster formation in vitro and reacts with nuclear mitotic apparatus protein in vivo.
Měrná jednotka: 1 * 100 µl


Katalogové číslo: (BOSSBS-3406R-A750)
Dodavatel: Bioss
Popis: Structural Maintenance of Chromosomes (SMC) family proteins play critical roles in various nuclear events that require structural changes of chromosomes, including mitotic chromosome organisation, DNA recombination and repair and global transcriptional repression. The chromosome proteins are conserved in eukaryotes and can lead to mitotic chromosome segregation defects, suggesting a critical function of SMC family proteins in mitotic chromosome dynamics. SMC1 and SMC3 form a heterodimeric complex required for metaphase progression in mitotic cells. Specifically this SMC1/SMC3 complex is responsible for sister chromatid cohesion during metaphase. A number of cellular factors interact with hSMC1/hSMC3 during cell cycle. The major population of hSMC1/hSMC3 is in a compex with hRAD21 forming the human cohesion complex. Human cohesion complex associates with chromosomes which peaks at S phase and dissociates from chromosomes during G2/M transition. In addition, a subpopulation of hSMC1/hSMC3 associates tightly with nuclear matrix and centrosomes during interphase. A subset of hSMC1/hSMC3 is localised to spindle poles, spindles and kinetochores during mitosis when cohesin is in the cytoplasm. hSMC1/hSMC3 is required for spindle aster formation in vitro and reacts with nuclear mitotic apparatus protein in vivo.
Měrná jednotka: 1 * 100 µl


Katalogové číslo: (BOSSBS-3406R-A350)
Dodavatel: Bioss
Popis: Structural Maintenance of Chromosomes (SMC) family proteins play critical roles in various nuclear events that require structural changes of chromosomes, including mitotic chromosome organization, DNA recombination and repair and global transcriptional repression. The chromosome proteins are conserved in eukaryotes and can lead to mitotic chromosome segregation defects, suggesting a critical function of SMC family proteins in mitotic chromosome dynamics. SMC1 and SMC3 form a heterodimeric complex required for metaphase progression in mitotic cells. Specifically this SMC1/SMC3 complex is responsible for sister chromatid cohesion during metaphase. A number of cellular factors interact with hSMC1/hSMC3 during cell cycle. The major population of hSMC1/hSMC3 is in a compex with hRAD21 forming the human cohesion complex. Human cohesion complex associates with chromosomes which peaks at S phase and dissociates from chromosomes during G2/M transition. In addition, a subpopulation of hSMC1/hSMC3 associates tightly with nuclear matrix and centrosomes during interphase. A subset of hSMC1/hSMC3 is localized to spindle poles, spindles and kinetochores during mitosis when cohesin is in the cytoplasm. hSMC1/hSMC3 is required for spindle aster formation in vitro and reacts with nuclear mitotic apparatus protein in vivo.
Měrná jednotka: 1 * 100 µl


Katalogové číslo: (BOSSBS-3406R-FITC)
Dodavatel: Bioss
Popis: Structural Maintenance of Chromosomes (SMC) family proteins play critical roles in various nuclear events that require structural changes of chromosomes, including mitotic chromosome organization, DNA recombination and repair and global transcriptional repression. The chromosome proteins are conserved in eukaryotes and can lead to mitotic chromosome segregation defects, suggesting a critical function of SMC family proteins in mitotic chromosome dynamics. SMC1 and SMC3 form a heterodimeric complex required for metaphase progression in mitotic cells. Specifically this SMC1/SMC3 complex is responsible for sister chromatid cohesion during metaphase. A number of cellular factors interact with hSMC1/hSMC3 during cell cycle. The major population of hSMC1/hSMC3 is in a compex with hRAD21 forming the human cohesion complex. Human cohesion complex associates with chromosomes which peaks at S phase and dissociates from chromosomes during G2/M transition. In addition, a subpopulation of hSMC1/hSMC3 associates tightly with nuclear matrix and centrosomes during interphase. A subset of hSMC1/hSMC3 is localized to spindle poles, spindles and kinetochores during mitosis when cohesin is in the cytoplasm. hSMC1/hSMC3 is required for spindle aster formation in vitro and reacts with nuclear mitotic apparatus protein in vivo.
Měrná jednotka: 1 * 100 µl


Katalogové číslo: (BOSSBS-3406R)
Dodavatel: Bioss
Popis: Structural Maintenance of Chromosomes (SMC) family proteins play critical roles in various nuclear events that require structural changes of chromosomes, including mitotic chromosome organization, DNA recombination and repair and global transcriptional repression. The chromosome proteins are conserved in eukaryotes and can lead to mitotic chromosome segregation defects, suggesting a critical function of SMC family proteins in mitotic chromosome dynamics. SMC1 and SMC3 form a heterodimeric complex required for metaphase progression in mitotic cells. Specifically this SMC1/SMC3 complex is responsible for sister chromatid cohesion during metaphase. A number of cellular factors interact with hSMC1/hSMC3 during cell cycle. The major population of hSMC1/hSMC3 is in a compex with hRAD21 forming the human cohesion complex. Human cohesion complex associates with chromosomes which peaks at S phase and dissociates from chromosomes during G2/M transition. In addition, a subpopulation of hSMC1/hSMC3 associates tightly with nuclear matrix and centrosomes during interphase. A subset of hSMC1/hSMC3 is localized to spindle poles, spindles and kinetochores during mitosis when cohesin is in the cytoplasm. hSMC1/hSMC3 is required for spindle aster formation in vitro and reacts with nuclear mitotic apparatus protein in vivo.
Měrná jednotka: 1 * 100 µl


Katalogové číslo: (BOSSBS-3406R-A488)
Dodavatel: Bioss
Popis: Structural Maintenance of Chromosomes (SMC) family proteins play critical roles in various nuclear events that require structural changes of chromosomes, including mitotic chromosome organization, DNA recombination and repair and global transcriptional repression. The chromosome proteins are conserved in eukaryotes and can lead to mitotic chromosome segregation defects, suggesting a critical function of SMC family proteins in mitotic chromosome dynamics. SMC1 and SMC3 form a heterodimeric complex required for metaphase progression in mitotic cells. Specifically this SMC1/SMC3 complex is responsible for sister chromatid cohesion during metaphase. A number of cellular factors interact with hSMC1/hSMC3 during cell cycle. The major population of hSMC1/hSMC3 is in a compex with hRAD21 forming the human cohesion complex. Human cohesion complex associates with chromosomes which peaks at S phase and dissociates from chromosomes during G2/M transition. In addition, a subpopulation of hSMC1/hSMC3 associates tightly with nuclear matrix and centrosomes during interphase. A subset of hSMC1/hSMC3 is localized to spindle poles, spindles and kinetochores during mitosis when cohesin is in the cytoplasm. hSMC1/hSMC3 is required for spindle aster formation in vitro and reacts with nuclear mitotic apparatus protein in vivo.
Měrná jednotka: 1 * 100 µl


Katalogové číslo: (BOSSBS-3406R-CY3)
Dodavatel: Bioss
Popis: Structural Maintenance of Chromosomes (SMC) family proteins play critical roles in various nuclear events that require structural changes of chromosomes, including mitotic chromosome organization, DNA recombination and repair and global transcriptional repression. The chromosome proteins are conserved in eukaryotes and can lead to mitotic chromosome segregation defects, suggesting a critical function of SMC family proteins in mitotic chromosome dynamics. SMC1 and SMC3 form a heterodimeric complex required for metaphase progression in mitotic cells. Specifically this SMC1/SMC3 complex is responsible for sister chromatid cohesion during metaphase. A number of cellular factors interact with hSMC1/hSMC3 during cell cycle. The major population of hSMC1/hSMC3 is in a compex with hRAD21 forming the human cohesion complex. Human cohesion complex associates with chromosomes which peaks at S phase and dissociates from chromosomes during G2/M transition. In addition, a subpopulation of hSMC1/hSMC3 associates tightly with nuclear matrix and centrosomes during interphase. A subset of hSMC1/hSMC3 is localized to spindle poles, spindles and kinetochores during mitosis when cohesin is in the cytoplasm. hSMC1/hSMC3 is required for spindle aster formation in vitro and reacts with nuclear mitotic apparatus protein in vivo.
Měrná jednotka: 1 * 100 µl


Katalogové číslo: (HISM732-2546)
Dodavatel: HICHROM
Popis: [EN]COSMICSIL ASTER C18 XD 5UM 250X4.6MM 1 * 1 KS
Měrná jednotka: 1 * 1 KS


Katalogové číslo: (PRSI22-683)
Dodavatel: ProSci Inc.
Popis: Anti-CLASP1 Rabbit Polyclonal Antibody
Měrná jednotka: 1 * 50 µl

New Product


Katalogové číslo: (ANTIA101384-100)
Dodavatel: ANTIBODIES.COM
Popis: Rabbit polyclonal antibody to MAP9 for WB and ELISA with samples derived from human.
Měrná jednotka: 1 * 100 µG

New Product


Cena na vyžádání
Omezené množství produktu na skladě. Zboží může být k dispozici v jiném skladě poblíž vašeho sídla. Přesvědčte se, že jste přihlášení na stránky, abyste mohli vidět dostupné položky na skladě. Pokud je stále zobrazeno call a potřebujete asistenci, volejte na číslo 321 570 321.
Omezené množství produktu na skladě. Zboží může být k dispozici v jiném skladě poblíž vašeho sídla. Přesvědčte se, že jste přihlášení na stránky, abyste mohli vidět dostupné položky na skladě. Pokud je stále zobrazeno call a potřebujete asistenci, volejte na číslo 321 570 321.
Daná chemikálie je regulována dle platné legislativy a bude vyžadováno vyplnění formuláře. Jeho včasným vyplněním uspíšíte dodání produktu.
-Additional Documentation May be needed to purchase this item. A VWR representative will contact you if needed.
Tento produkt je zablokován vaší organizací. Kontaktujte své nákupní oddělení pro více informací.
Původní produkt již není k dispozici. Zobrazen je náhradní produkt.
Tento produkt již není k dispozici. Podobné produkty můžete vyhledat pomocí VWR katalogových čísel nebo čísel dodavatele uvedených výše. Pokud potřebujete další asistenci, zavolejte na telefonní číslo zákaznického servisu VWR 321 570 321.
1 - 16 of 18
no targeter for Bottom